CONTENTS of journal "OIL & GAS CHEMISTRY" 3·2017 (Russia)

GAS SULFUR: PROBLEMS AND SOLUTIONS

THE PRODUCTION ANALYSIS OF SULFUR USING THE CLAUS METHOD AT OIL AND GAS INDUSTRY OF RUSSIA, UNSOLVED PROBLEMS (P. 5-12)
GOLUBEVA I.A., Dr. Sci. (Chem.), Prof. of the Department of Gaschemistry
KHAYRULLINA G.R., Student of the Department of Gaschemistry
STARYNIN A.YU., Graduate Student of the Department of Gaschemistry
Russian State University by I.M. Gubkin (65, Corp. 1, Leninskiy Ave., 119991, Moscow, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
KARATUN O.N., Dr. Sci. (Tech.), Prof., Chief Technologist, Head of Technological Department of Astrakhan Gas Processing Plant
LLC Gazprom Dobycha Astrakhan (30, Lenina St., 414000, Astrakhan, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..
ABSTRACT
The analysis of the main problems of manufacture of sulfur in Russia is carried out, including the desulfurization of natural gas and the release of acidic gases. It is analysed the basic problems of production of sulfur by Claus method, which require solutions in the Russian oil and gas companies. We also consider the questions of increase of efficiency of the thermal and catalytic stages of the Claus installation, which are the main problems of optimization of sulphur production. Effective methods to increase the yield of sulfur are suiggested: increase of the content of acidic gases of hydrogen sulfide due to the optimization of the composition of the chemical adsorbent used in the purification of natural gas; enrichment of the air used for the thermal steps for the oxidation of hydrogen sulfide with oxygen; an increase in the conversion of COS and CS2 in the catalytic reactors, the regulation of temperature modes of their work; the use of more efficient catalyst and maintaining its activity at a high level.
KEYWORDS: sulfur, Astrakhan gas processing plant, the Claus process, optimization of the acid gases, purification, optimization of sulfur production.

CHEMICAL TECHNOLOGIES AND PRODUCTS
 
CALCULATION ADDITIVE METHODS OF HEAT CAPACITY OF HYDROCARBONS (P. 13-15)
AUBEKEROV T.M., Master student
GILEMYANOVA D.F., Master student
MARTENS E. YA., Master student
TRAPEZNIKOVA E.F., Cand. Sci. (Tech.), Assoc. Prof. of the Department of Gas Chemistry and Modeling of Chemical Processes
SHAMOVA N.A., Cand. Sci. (Tech.), Assoc. Prof. of Department of Gas Chemistry and Modeling of Chemical Processes
Ufa State Petroleum Technological University (USPTU) (1, Kosmonavtov St., 450062, Ufa, Republic of Bashkortostan, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ABSTRACT
Various methods of definition of heat capacities are considered. The purpose of work is search of the most exact method of calculation of a thermal capacity. The linear four-parametrical model for calculation of a heat capacity of alkanes with use of topological characteristics is offered: Winer’s index, Randich’s index and functions of eigenvalues of a topological matrix of a molecule. The corresponding algorithm of calculation is developed. These researches can be used in engineering and technical calculations.
KEYWORDS: heat, alkanes, the principle of the additivity, the topological characteristics, the Wiener index, the index of Randich.

DEVELOPMENT OF METHODS FOR ASSESSMENT HAZARD INSTALLATION OF STABILIZATION OF OIL (P. 16-20)
SAMSONOVA V.A., Cand. Sci. (Tech.), Assoc. Prof. of the Department of Gas Chemistry and Modeling of Chemical Processes
KHUSNIYAROV M.KH., Dr. Sci. (Tech.), Prof. Department of Automation of Technological Processes and Productions
FAZULLIN A.M., Master Student
Ufa State Petroleum Technological University (USPTU) (1, Kosmonavtov St., 450062, Ufa, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ABSTRACT
Currently, for fire and industrial safety of dangerous industrial objects used several classifications of industrial facilities in their risk of possible adverse effects on staff, the civilian population, the environment. All these classifications are intended to establish requirements to ensure the protection and organization of services of hazardous production facilities systems. A method of assessing the level of risk, which takes into account the current state of the object and allows you to control the ability to change the threat level in the implementation of individual measures and the implementation of emergency response systems.
KEYWORDS: hazardous production facilities, emergency, expert survey, the matrix «factors experts», the relative importance of factors.

2,2’-METHYLENE-BIS-(6-TRET-BUTYL-4-METHYLPHENOL) -EFFICIENT INDUSTRIAL STABILIZER (P. 21-24)
KHABIBULLINA G.А., Graduate student
Ufa State Petroleum Technological University (1, Kosmonavtov Str., 450062, Ufa, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
GAYNULLIN KH.KH., Head of laboratory,
JSC «Sterlitamak Petrochemical Plant» (10, Technicheskaya Str., 450110, Sterlitamak, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ABSTRACT
The article shows the main advantages of the use of bisphenols in comparison with one of the most well-known stabilizers 2,6-di-tert-butyl-4-methylphenol. Describes various methods for the preparation of an antioxidant 2,2’-methylenebis(6-tert-butyl-4-methylphenol) and, high stabilizing ability which determines the broad scope of its application. Two main methods of obtaining determined – water-emulsion condensation and methodwith using methylal.The comparative analysis of these methods, the advantages and disadvantages.
KEYWORDS: antioxidant, methods for obtaining, bisphenol, condensation, polymer, catalyst, melting point.

REGISTRATION, CONTROL AND MANAGEMENT IN THE REFINING AND PETROCHEMICAL INDUSTRY, THE BASIC PARAMETERS OF PROCESSES REGULATION (P. 25-27)
KHASANOV I.I., Cand. Sci. (Tech.), Associate Prof. of Department of Transport and Storage of Oil and Gas
LOGINOVA E.A., Engineer
POLETAEVA O.YU., Dr. Sci. (Tech.), Prof. of the Department of Hydraulic and Gas Dynamics of Pipeline Systems and Hydraulic Machines
Ufa State Petroleum Technological University (USPTU) (1, Kosmonavtov St., 450062, Ufa, Republic of Bashkortostan, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..
ABSTRACT
The paper presents a systematic analysis of the parameters of the processes of dehydrogenation and dehydration of the catalytic processes of  hydrocarbons, it suggests the system of monitoring, recording and automatic control of the process. As well as the article considers the possibilities of control and regulating processes by means of the instrumentation, which was the basis for the devices of control, registration, management and regulation of chemical reactions. The devices of registration and control are presented, their origin and development to the real possibilities. First the possibility of a systematic analysis is proposed, which is accumulating in automatic control of dehydrogenation reaction of alcohol to butadiene.
KEYWORDS: control, registration and automatic control, the process parameters of organic synthesis.
 
THE FORMATION AND DEVELOPMENT OF THERMAL CRACKING PROCESS AT BAKU REFINERIES (P. 28-34)
AKHMADOVA KH.KH., Dr. Sci. (Tech.), Prof. of the Department of Chemical Technology of Oil and Gas
Grozny State Oil Technical University (100, Kh.A. Isaeva Av., 364051, Chechen Republic, Grozniy, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
SYRKIN A.M., Cand. Sci. (Chem.), Prof. of the Department of General and Analytical Chemistry
Ufa State Petroleum Technological University (USPTU) (1, Kosmonavtov St., 450062, Republic of Bashkortostan, Ufa, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
SHTEPA D.V., Junior Researcher of the Department of General Chemistry
Lomonosov Moscow State University, Faculty of Chemistry (1-3, Leninskiye Gory, 119991, Moscow, Russia).
MOVSUM-ZADE N.CH., Cand. Sci. (Tech.), Researcher
Institute of information technology of NAS of Azerbaijan (9, B. Vahabzade, Baku, Azerbaijan Republic, AZ1141).
ABSTRACT
In article the brief summary on formation of processes of thermal cracking is given in the Baku oil refineries. It is shown that implementation of thermal cracking in the Russian oil processing began with a construction of the first trial installations of thermocracking in Baku. The first industrial domestic plant «Soviet Cracking» and the first industrial plants of thermocracking which were purchased abroad bylb are also constructed at the Baku oil refineries. The contribution of the Baku scientists and researchers to development of domestic process of thermocracking is shown.
KEYWORDS: Baku oil refineries, thermocracking, trial installations, first domestic industrial plant «Soviet Cracking», Shukhova-Kapelyushnikova installation, foreign technologies of cracking, installation of system of Vinkler-Koch, Jenkins Vikkersa, exit, capacity, gasolines, cracking gases, pyrolysis, petrochemistry.

PRODUCTION OF HYDROCARBON FUELS BASED ON ALTERNATIVE NONPETROLEUM RAW MATERIALS (P. 35-40)
TRETYAKOV V.F., Dr. Sci. (Chem.), Prof., Chief Researcher
ILOLOV A.M., Cand. Sci. (Chem.), Researcher
BUDNYAK A.D., Postgraduate
A.V. Topchiev Institut of Petrochemical Synthesis (TIPS RAS) (29, Leninskiy prosp., 119991, Moscow, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
FRANTSUZOVA N.A., Cand. Sci. (Chem.), Associate Prof.
RAGUTKIN A.V., Cand. Sci. (Tech.), Vice-Rector for Innovative Development
LATYSHKOV A.A., Engineer
NIKONOROV S.I., Student
Moscow Technological University (MIREA) Institute of Fine Chemical Technologies (86, Vernadsky Av., 119571, Moscow, Russia).
ABSTRACT
The article presents a forecast of the main trends of development of fuel and energy complex, taking into account the influence of the greenhouse effect. Technologies of production of fuels based on alternative raw materials have been analyzed.
KEYWORDS: timber, oil, greenhouse effect, fuel, energy saving.

KINETICS AND CATALYSIS

THE CATALYSTS OF IMPORT SUBSTITUTION (P. 41-51)
GOLOSMAN E.Z., Dr. Sci. (Chem.), Prof., Chief Researcher
VOLCHENKOVA S.A., Engineer of the first category
Novomoskovsk Institute of the Nitrogen Industry (LLC «NIAP-KATALIZATOR») (10, Svyazy st., Novomoskovsk, 301660,Tula Region, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ABSTRACT
The article presents the main industrial catalysts, developed by experts of «NIAP-Katalizator» in collaboration with several research institutes and universities. The catalysts are produced by the «NIAP-Katalizator» catalyst production and implemented in over 200 enterprises of Russia, CIS and far abroad in the chemical, petrochemical, metallurgical and other industries. The lifespan of a number of catalysts is 15–20 years. High efficiency of the developed catalysts in the first stage of methanation catalysts, conversion of hydrocarbon gases, desulphurization, purification of process and exhaust gases allowed to carry out import substitution of many catalysts of foreign companies. In January 2017, it has been able to conduct import substitution of high-performance G1-11 brand catalyst of German company for cleaning coke oven gases containing hydrocyanic acid, benzene, hydrogen sulfide, water, ammonia, by NIAP-13-06 (KDA-18A) developed contact. Process temperature is 1100–1200 °С. Due to the low bulk weight download size is significantly reduced . The catalyst provides a stable conversion of the dissociation of ammonia to 99.99%, which is above the activity of the G1-11 catalyst . The catalyst has been embedded in the shop of catching and processing chemical products of the Magnitogorsk metallurgical combine (MMС). At the end of 2017 it is planned to continue the substitution of the catalyst of the brand NIAP-13-06 (KDA-18A) in the form of granules with concave ends and 7 holes in a single cokereactors of MMC production.
KEYWORDS: catalytists, activity, bulk weight, decontamination, service life, import substitution.

SUPERACID CATALYSTS BASED ON ACID-ACTIVATED MONTMORILLONITE IN THE FISCHER-TROPSCH SYNTHESIS (P. 52-55)
KARIMOVA A.R., Postgraduate Student
DAVLETSHIN A.R., Cand. Sci. (Tech.), Assoc. Prof.
RAKHIMOV M.N., Dr. Sci. (Tech.), Prof.
MURZABEKOVA A.B., Master Student
Ufa State Petroleum Technological University (USPTU) (1, Kosmonavtov St., 450062, Ufa, Russia).
E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. ; E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ABSTRACT
The article presents the research results of the development of superacid catalysts, based on montmorillonyte, obtained by intercalating with zirconium polyvalent cation, impregnation of a solution of cobalt nitrate and promotion with organo-metallic siloxane. The regularities of the effect of temperature and catalyst composition on the Fischer-Tropsch process parameters are examined.
KEYWORDS: Fischer–Tropsch synthesis, superacid catalyst, montmorillonyte, modifying.

THE CONTROL OF NEGATIVE IMPACT OFWATER ON ACTIVITY AND STABILITY OF IMPREGNATED COCATALYST FOR FISCHER–TROPSCH SYNTHESIS (P. 56-60)
SINEVA L.V., Cand. Sci. (Chem.), Leading Researcher
Federal State Budgetary Institution « Technological Institute for Superhard and Novel Carbon Materials» (FSBI TISNCM) (7a, Tsentralnaya St., 142190, Troitsk, Moscow, Russia). OOO INFRA (11-3B, Mokhovaya St., 125009, Moscow, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
KULCHAKOVSKAYA E.V., Junior Researcher
ASALIEVA E.YU., Junior Researcher
Federal State Budgetary Institution « Technological Institute for Superhard and Novel Carbon Materials» (FSBI TISNCM) (7a, Tsentralnaya St., 142190, Troitsk, Moscow, Russia).
MORDKOVICH V.Z., Dr. Sci. (Chem.), Head of Department, Scientific Director OOO INFRA
Federal State Budgetary Institution « Technological Institute for Superhard and Novel Carbon Materials» (FSBI TISNCM) (7a, Tsentralnaya St., 142190, Troitsk, Moscow, Russia). OOO INFRA (11-3B, Mokhovaya St., 125009, Moscow, Russia). E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.
ABSTRACT
The ability to control the negative impact of water on activity and stability of impregnated Co-catalyst and its thermally conductive components by introducing zeolite into catalyst composition to create hydrophobic surface is manifested. The introduction of H-zeolites into Co-catalyst creates opportunity to control the hydrophobicity of a catalyst surface and hence to promote the increase of productivity and prevents oxidation of the thermally conductive component. In addition, the stability of catalyst behavior and its lifetime increase.
KEYWORDS: heterogeneous catalysis, Fischer–Tropsch synthesis, cobalt catalyst, zeolite, hydrocarbons, water.

NOBEL LAUREATES

THE NOBEL PRIZE IN CHEMISTRY – 2016 (P. 61-63)

INFORMATION FOR AUTHORS

EDITORIAL AND PUBLISHING SERVICES (P. 64)

 

 

Фотогалерея

КОНТАКТЫ

Индекс: 119313
Москва, улица Гарибальди, д. 4Г
Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Телефон редакции:
+7 (916) 593-05-29